$$
\begin{aligned}
& \text { 47) } f^{\prime \prime}(x)=\frac{2}{x^{2}} \quad f^{\prime}(1)=1 \quad f(1)=1 \quad x>0 \\
& \int \frac{d^{2} x}{d y^{2}}=\int \frac{2}{x^{2}} d x \quad \begin{array}{r}
2 x^{-2} \\
-2 x^{-1}
\end{array} \\
& \frac{d x}{d y}=\frac{-2}{x}+c \quad \int \frac{d y}{d x}=\int\left(-\frac{2}{x}+3\right) d x \\
& 1=-\frac{2}{1}+c \\
& 3=c \\
& y=-2 \ln x+3 x+c \\
& 1=-2 \ln (1)+3(1)+c \\
& -2=c \\
& y=-2 \ln x+3 x-2
\end{aligned}
$$

75) $y=\tan x$

$$
\begin{aligned}
& \int_{0}^{\frac{\pi}{4}} \tan x d x=-\left.\ln |\cos x|\right|_{0} ^{\frac{\pi}{4}} \\
& \left.=\sqrt{\ln \frac{1-1}{\sqrt{2}}}+\ln \right\rvert\, \ln (1)=0 \\
& \text { Negate opener } \\
& \text { means epifocal } \\
&=\ln \sqrt{2}
\end{aligned}
$$

alternative answer with
the half power (radical) in front.
$=\frac{1}{2} \ln 2$
55) $\int_{1}^{e} \frac{(1+\ln x)^{2}}{x} d x \quad \begin{gathered}u=1+\ln x \\ d u\end{gathered}$

Change the limits to u values.

$$
=\int_{1}^{2} u^{2} d u=\left.\frac{1}{3} u^{3}\right|_{1} ^{2}=\frac{1}{3}(8-1)=\frac{7}{3}
$$

73)

$$
\begin{aligned}
& y=x+\frac{4}{x} \\
& \int_{1}^{4}\left(x+\frac{4}{x}\right) d x \\
& \frac{1}{2} x^{2}+\left.4 \ln x\right|_{1} ^{4}= {\left[\frac{1}{2}(4)^{2}+4 \ln 4\right]-\left[\frac{1}{2}(1)^{2}+4 \ln 1\right] } \\
&= 8+4 \sqrt{2}^{2} 4-\frac{1}{2} \\
& \frac{15}{2}+8 \ln 2
\end{aligned}
$$

81)

$\int_{1}^{5} \frac{12}{x} d x$
$\frac{1}{2}(4)\left(b_{1}+b_{2}\right)$

$$
\begin{aligned}
x_{0} & =1 \\
x_{1} & =2 \\
x_{2} & =3 \quad \Delta x=1 \\
x_{3} & =4 \\
x_{4} & =5
\end{aligned} \quad 4
$$

$$
=\frac{1}{2}(1)(12+6)+\frac{1}{2}(1)(6+4)+\frac{1}{2}(1)(4+3)+\frac{1}{2}(1)(3+1)
$$

$$
=\frac{1}{2}(39) \frac{39}{2}
$$

